Basic Problems - 1
Forward Modeling & Backward Modeling
Forward Modeling: Source, Model parameters; mathematical model, observed data
Backford Modeling:Observed data, mathematical model, source, model parameters
- inversion is based on forward modeling. is it a simplest way to implement forward modeling???
Green Function
\[Lu=0/-f(x,t)\]L is 2-order diffferential oprator.
In gravity/magnetic method: \(L=\Delta=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2}\)
Electromagnetic: \(L=\Delta+k^2$, $k=\omega^2\mu\epsilon/c^2+i4\pi\omega\mu r/c^2\)
Seismic: \(L=\Delta-\frac{1}{v^2}\frac{\partial^2}{\partial t^2}\)
The physical meaning of Green function
source function & basic solution
if BC & Initial Condition exists, Green funtion is related to those conditions.
use Green function to solve any field simulated by a point source.
How to use Green function to solve a specific problem?
(1) find a proper integration(a specific form) to represent as the solution of the problem.
(2) get the solution of G and $\frac{\partial G}{\partial n}$
(3) put G and $\frac{\partial G}{\partial n}$ into the integration. Then we’ll get the solution.
Numerical Differentiation
Taylor expansion
it’s simple:
\[f(x+h)=f(x)+f'(x)h+\frac{f''(x)}{2}h^2+...\]Differential
Forward Differential: \(f'(x)\approx\frac{f(x+h)-f(x)}{h}+o(h)\)
Backward Differential: \(f'(x)\approx\frac{f(x)-f(x-h)}{h}+o(h)\)
Central Differential: \(f'(x)\approx\frac{f(x+h)-f(x-h)}{2h}+o(h^2)\)
Explicit: \(u_{j+1}=u_j-f(u_j,t_j)\Delta t\)
Implicit & Crank-Nocolson form
Numerical Integration
\[I=\int_a^bf(x)dx\\ I\approx\sum_{i=0}^n\Delta xf(x_i)\]Midpoint formula:
\[I\approx\int_{i=0}^{n-1}\Delta xf(\frac{x_i+x_{x+1}}2)\]Simpson Formula
\[I\approx \sum_{i=0}^{n-1}\frac{\Delta x}{6}[f(x_i)+4f(\frac{x_i+x_{x+1}}2)+f(x_{i+1})]\]Inversion of Matrix && Singular value
small sigular value will cause problems, we need to handle it !
\[1/\lambda\to\frac{\lambda}{\lambda^2+\alpha}\]Norm
1-Norm
2-norm(it’s important)
文档信息
- 本文作者:Shenyao Jin
- 本文链接:https://shenyaojin.github.io/2022/06/08/Basic-Problems/
- 版权声明:自由转载-非商用-非衍生-保持署名(创意共享3.0许可证)